• 网站首页
  • 实验室概况
    实验室简介 研究方向简介 组织机构 现任实验室主任 学术委员会 联系我们
  • 研究队伍
    学术带头人 客座教授 固定研究人员 访问学者 人才培养
  • 研究成果
    最新研究成果 代表性成果 科研论文一览表 科研项目 专利、软件著作权 获奖成果 联合研究成果
  • 学术交流
    邀请学术报告 举办学术会议 参加学术会议
  • 开放基金
    申报通知指南 开放课题 管理办法
  • 规章制度
  • 人才招聘
  • 资料下载
  • 通知公告
    实验室2024年开放基金项目申...
    实验室关于2023年开放课题的...
    实验室2023年第二批应用技术...
    实验室2023年第一批应用技术...
    实验室2023年开放基金项目申...
    您现在的位置: 首页 >> 研究成果 >> 最新研究成果 >> 正文
    最新研究成果
    大数据智能决策方向刘熠老师发表SCI二区论文
    2019-12-19     来源:本站原创   编辑:马常友   查看:  

     

    20191016日,数据恢复四川省重点实验室刘熠老师团队在《IEEE ACCESS》(IF4.098,SCI二区)杂志发表题为《Multiattribute Group Decision-Making Approach With Linguistic Pythagorean Fuzzy Information》的研究论文该研究提出了一种新的比较方法,并建立了一组Pythagorean 模糊信息聚合算子。在此基础上,针对权重信息完全未知(包括属性权重与专家权重均未知)的多属性群决策问题,建立了相应的具有Pythagorean 模糊信息的优化模型来确定权重。

            Abstract:  The purpose of this study is to construct the multi-attribute group decision making (MAGDM) approach with linguistic Pythagorean fuzzy information (LPFI) based on generalized linguistic Pythagorean fuzzy aggregation operators (GLPFA). To begin with, we define the generalized indeterminacy degree-preference distance of linguistic Pythagorean fuzzy numbers (LPFNs), on the basis of it, we build a new approach for ranking the alternatives after analysing the existed comparison rule. In addition, we introduce the new version of t-norms (TNs) and t-conorms (TCs) named linguistic Pythagorean t-norms (LPTNs) and linguistic Pythagorean t-conorms (LPTCs), which can be used to handle the LPFI; some special cases for LPTNs and LPTCs are obtained and they can deal with Pythagorean fuzzy information (PFI). Thirdly, we introduce the generalized linguistic Pythagorean fuzzy average aggregation operator (GLPFAA) based on LPTN and LPTC along with their properties are also investigated, whilst, some special cases of GLPAA are obtained when LPTN and LPTC take some special TNs and TCs. Finally, a MAGDM approach based on some LPTNs and LPTCs is constructed to deal with some MAGDM problems with unknown attributes'weights and experts' weights, before building the MAGDM approach, we define new cross-entropy to fix the experts's weights and use the maximizing deviation to calculate the attributes' weights based on the proposed indeterminacy degree-preference distance. Consequently, an illustrative example is provided in order to show the effectiveness and advantages of the proposed method and some comparisons are also carried out.

    文章链接:https://ieeexplore.ieee.org/document/8854073

    数据恢复四川省重点实验室(内江师范学院) 版权所有 ? 2019-2029, All right reserved.