• 网站首页
  • 实验室概况
    实验室简介 研究方向简介 组织机构 现任实验室主任 学术委员会 联系我们
  • 研究队伍
    学术带头人 客座教授 固定研究人员 访问学者 人才培养
  • 研究成果
    最新研究成果 代表性成果 科研论文一览表 科研项目 专利、软件著作权 获奖成果 联合研究成果
  • 学术交流
    邀请学术报告 举办学术会议 参加学术会议
  • 开放基金
    申报通知指南 开放课题 管理办法
  • 规章制度
  • 人才招聘
  • 资料下载
  • 通知公告
    实验室2024年开放基金项目申...
    实验室关于2023年开放课题的...
    实验室2023年第二批应用技术...
    实验室2023年第一批应用技术...
    实验室2023年开放基金项目申...
    您现在的位置: 首页 >> 研究成果 >> 最新研究成果 >> 正文
    最新研究成果
    复杂网络与保密通讯方向曾德强老师发表SCI一区论文
    2019-12-19     来源:本站原创   编辑:马常友   查看:  

            201985日,数据恢复四川省重点实验室复杂网络与保密通信方向曾德强老师团队在国际期刊IEEE Transactions on Neural Networks and Learning Systems》(IF11.683,SCI一区)在线发表题为《Pinning Synchronization of Directed Coupled Reaction-Diffusion Neural Networks With Sampled-Data Communications》的研究论文,该研究解决了有向耦合反应-扩散神经网络的抽样通信牵制同步问题。

            AbstractThis paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov–Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is fifirst proposed, which effectively relaxes the restrictions of the positive defifiniteness of the constructed LKF. Based on the LKF and the inequality, suffificient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.

    文章链接:https://ieeexplore.ieee.org/document/8788449

    数据恢复四川省重点实验室(内江师范学院) 版权所有 ? 2019-2029, All right reserved.